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Consistency and uniqueness questions raised by both the 1941 and 1962 
Kolmogorov inertial-range theories are examined, The 194 1 theory, although 
unlikely from the viewpoint of vortex-strekching physics, is not ruled out just 
because the dissipation fluctuates; but self-consistency requires that dissipation 
fluctuations be confined to dissipation-range scales by a spacewise mixing 
mechanism. The basic idea of the 1962 theory is a self-similar cascade mechanism 
which produces systematically increasing intermittency with a decrease of scale 
size. This concept in itself requires neither the third Kolmogorov hypothesis 
(log-normality of locally averaged dissipation) nor the first hypothesis (univer- 
sality of small-scale statistics as functions of scale-size ratios and locally averaged 
dissipation). It does not even imply that the inertial range exhibits power laws. 
A central role for dissipation seems arbitrary since conservation alone yields no 
simple relation between the local dissipation rate and the corresponding proper 
inertial-range quantity: the local rate of energy transfer. A model rate equation 
for the evolution of probability densities is used bo illustrate that even scalar 
nonlinear cascade processes need not yield asymptotic log-normality. The 
approximate experimental support for Kolmogorov’s hypothesis takes on added 
significance in view of the wide variety of a priori admissible alternatives. 

If the Kolmogorov law E(k)  oc k-*+ is asymptotically valid, it is argued that 
the value of p depends on the details of the nonlinear interaction embodied in 
the Navier-Stokes equation and cannot be deduced from overall symmetries, 
invariances and dimensionality. A dynamical equation is exhibited which has 
the same essential invariances, symmetries, dimensionality and equilibrium 
statistical ensembles as the Navier-Stokes equation but which has radically 
different inertial-range behaviour . 

1. Introduction 
Kolmogorov’s (1941) similarity theory introduced the hypothesis of a univer- 

sal, isotropic, homogeneous statistical distribution for the small scales of motion 
in high-Reynolds-number incompressible turbulence. The theory envisaged a 
cascade of kinetic energy from large scales (low wavenumbers) to small scales 
(large wavenumbers) which was local in scale size, or wavenumber, and in which 
all statistical information about the large scales was lost, save for the mean 
energy-cascade rate itself. Kolmogorov formulated the theory as two specific 
hypotheses. First, that the n-variate distributions of the velocity differences 
u(x + r, t )  - u(x, t )  are universal isotropic functions solely of the difference 
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vectors r, the kinematic viscosity v and the mean rate of energy dissipation per 
unit mass E ,  provided that all the vectors r are small compared with macroscales 
of the turbulence. Second, that when, in addition, the vectors r are large 
compared with dissipation-range scales the distributions are independent of v. 

The two hypotheses lead immediately, by dimensional analysis, to explicit 
functional forms for moments of velocity differences in the inertial, or v- 
independent, range. In particular, 

(lu(x+r,t)-u(x,t)ln) = B,(w)Q%, (1 .1 )  

where ( ) denotes an average over an appropriate ensemble and the B, are 
universal constants. It follows also that the characteristic wavenumber which 
marks the transition from the inertial to dissipation range is lc, = (e/v3)&. On 
the assumption that the spectrum in the dissipation range falls off rapidly enough 
with increasing wavenumber, (1. l), with n = 2, leads by Fourier transformation 
to the inertial-range spectrum law 

E(k)  = C&k-Q, (1.2) 

where C is, again, a universal constant and the energy spectrum is defined so 
that the velocity variance is 

2lOmE(k)  dlc. 

Kolmogorov’s 1941 theory has achieved an embarrassment of success. The 
‘ -%’-spectrum has been found not only where it reasonably could be expected 
but also at  Reynolds numbers too small for a distinct inertial range to exist and 
in boundary layers and shear flows where there are substantial departures from 
isotropy, and such strong effects from the mean shearing motion that the step- 
wise cascade appealed to by Kolmogorov is dubious. Measurements a t  high 
Reynolds numbers not only support the universality of G over 1000-fold varia- 
tions in E ,  but also are consistent with the prediction, from Kolmogorov’s first 
hypothesis, that the dissipation-range spectrum scales according to 

E(k)  = C E ~ k - + ~ ( k / k , ) ,  (1.3) 

wheref(x) is a universal function satisfyingf(0) = 1 (Grant, Stewart & Moilliet 
1962). 

In  contrast to the corroboration of (1.2) and (1.3), experiments during the 
past 10 years do not support the predictions of (1 .1)  for higher order moments. 
According to the latter, the normalized moments 

(lu(x+r,t)-u(x, t)I~n)/( lU(X+r,t)-U(X,t) l2)tn 

are universal numbers, independent of E and r ,  if r is in the inertial range. Instead, 
the measurements yield values which increase dramatically with n and at 
high Reynolds numbers, indicating strong scale-dependent intermittency at  
small scales. Moreover, at fixed E and r ,  the intermittency at  a scale r in the 
inertial range appears to increase with L/r, where L is a macroscale character- 
istic of the energy-containing range. The experiments are inconclusive, because 
it is uncertain whether the Reynolds numbers are large enough to produce an 
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asymptotic regime, particularly with respect to higher statistics. Nevertheless, 
the data suggest that all is not well with the 1941 theory. 

Some of the early evidence on small-scale intermittency, togekher with further 
thoughts about the nature of the turbulent energy cascade, led Kolmogorov 
(1962) and Oboukhov (1962) to modify the 1941 theory so as to assign a key 
role to the statistics of the spatial distribution of dissipation. 

The dissipation per unit mass at  (x, t )  is 

qx, t )  = v(aui/axj) [2ud/2xj + au,/ax,j, (1.4) 

and a local spatial average may be defined by 

$(x,t) = 1 B(x+y,t)d3y. 
l y k t  

Kolmogorov (1962) replaced the first hypothesis of the 1941 theory by a modified 
hypothesis, which we shall state as follows. Suppose that x and x + r  both lie 
within a region of size 1 and that 1 < L, where L is the macroscale. Then the 
n-variate distributions of u(x + r, t )  - u(x, t ) ,  for a given value of 4(x, t ) ,  are 
universal functions of only v, E&(x, t) ,  1 and the arguments r. The second hypo- 
thesis of the 1962 theory is, as before, that dependence on v disappears if r is 
large compared with dissipation-range scales. In  addition, Kolmogorov now 
added a third hypothesis, which makes a highly specific assumption about the 
statistics of $(x,t). He supposed that $(x,t) is log-normal for 1 < L, with a 
variance given, in the statistically homogeneous case, by 

$ = A +pln (L/Z). (1.6) 

Here r; = {[ln (4/e)]z)>i p is a universal constant and A is a constant which 
depends on macroscale statistics. We may note that, by (1.5) and homogeneity, 
E = (E(x)) = {Et(x)), and the averages depend on neither x nor Z.j- 

By dimensional analysis, the first two hypotheses yield 

where we suppress time arguments. The B, are universal numbers. According 
to the third hypothesis, (1 .7)  has the explicit form 

(I u(x + r) - U(X) 1%) = ~:,(er)+"(r/L)i~~~n(3-12) (1.8) 

(cf. Gurvich & Yaglom 1967). Equation (1.2) is thereby replaced by 

E ( k )  = CE*k-%(kL)-ip, (1.9) 

and the normalized inertial-range velocity-difference moments are 

(I Au(x, r) I n ) / ( /  Au(x, r) )z) tn = B:,(B~)-3,(L/r)i~~n("-2), (1.10) 

where Au(x, r) = u(x+ r) -u(x). 
The dependence on n and on L/r in (1.10) is at  least roughly consistent with 

the experimental evidence on higher moments. Both moment measurements 
and determinations of the spectrum of E"(x), which we shall discuss later, suggest 

t Kolmogorov ( 1962) stated his theory more generally, for inhomogeneous turbulence, 
but the homogeneous case will be sufficient for our purposes. 
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that p N 0.5. With this value of p, (1.9) is not distinguishable experimentally 
from the original -$-law. Further support for the 1962 theory is provided by 
measurements of velocity derivatives aulax, which yield some fairly direct 
evidence that the probability distribution of F(x) is approximately log-normal. 
Some recent symposium papers which discuss the experimental results are 
Monin (1967)) Gibson, Stegun & Williams (1970) , Stewart, Wilson & Burling 
(1970),Dutton&Deaven(1972), Gibson &Masiello(1972),VanAtta &Park(l972) 
and Wyngaard & Pao (1972). Other significant papers on the small-scale struc- 
ture of laboratory and geophysical flows include Batchelor & Townsend (1949), 
Grant & Moilliet (1962), Gurvich & Zublowskii (1963), Pond, Stewart & Burling 
(1963), Pond & Stewart (1965), Gibson, Stegun & McConnell(1970), Wyngaard 
& Tennekes (1970), Frenkiel & Klebanoff (1971), Kuo & Corrsin (1971), Sheih, 
Tennekes & Lumley (1971)) Kuo & Corrsin (1972) and Tennekes & Wyngaard 
(1972). These references provide fairly exhaustive citations of other work. 

The present paper has two principal motivations. The first is to argue that 
the 1941 theory is by no means logically disqualified merely because the dissi- 
pation rate fluctuates. On the contrary, we find that at  the level of crude dimen- 
sional analysis and eddy-mitosis pictures (which is the extent of the contact 
usually made with the Navier-Stokes equation in briefs for either theory) the 
1941 theory is as sound a candidate as the 1962 theory. This does not imply that 
we espouse the 1941 theory. On the contrary, the theory is made implausible 
by the basic physics of vortex stretching. The point is that this question cannot 
be decided a priori; some kind of non-trivial use must be made of the Navier- 
Stokes equation. 

Our second principal purpose is to point out, with the aid of models, that, 
once the 1941 theory is abandoned, a Pandora’s box of possibilities is opened. 
The 1962 theory of Kolrnogorov seems arbitrary, from an a priori viewpoint, 
not only because the third hypothesis is so specific but because there are logical 
alternatives to the first hypothesis as well. Several authors have questioned 
whether the idea of a multistage energy cascade, which underlies both Kol- 
mogorov theories, is in fact valid (Townsend 1951; Corrsin 1962; Saffman 1968; 
Tennekes 1968). We make the point, instead, that even in the general framework 
of some kind of self-similar cascade, and of inkermittency which increases with 
the number of cascade steps, the 1962 theory is only one of many possibilitiies. 
From this position, the available experimental datia take on added significance. 
The Reynolds numbers are not high enough to yield results which could con- 
clusively verify any given theory of the small scales, nor are significantly higher 
Reynolds numbers foreseeable. Nevertheless, what data there are do give sub- 
stantial support to the 1962 Kolmogorov theory, and closely related alternatives, 
over other possibilities which must be logically admitted. This, it  is hoped, offers 
valuable clues to better understanding of the physics of turbulence and to 
analytical attacks. 

How a theoretical attack on the inertial-range problem should proceed is 
far from clear. No formal analysis by means of perturbation theory, the moment- 
equation hierarchy, or renormalization techniques can settle whether (1.9) is a 
valid equation and, if so, whether p = 0 or not. Orszag (1966) has shown that 
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,u = 0 is formally consistent with every order of the moment hierarchy, and in- 
deed arises from the hierarchy under the assumption that the moments and the 
cumulants of any given order go as the same power of k .  But if this restriction 
is relaxed, then p =)= 0 also is formally consistent. The Eulerian renormalized 
perturbation series has the formal solution E(k)  cc k-Q at every order, while 
low-order closure schemes that are invariant to random Galilean transformations 
lead naturally to -$ (Kraichnan 1964). Such schemes cannot embody the higher 
statistics associated with intermittency build-up. The real question concerns 
which, if any, of the formal solutions imply probability distributions that satisfy 
all realizability inequalities. The present paper does not face these questions. 
Instead, we point out some of the varied possibilities that arise from the basic 
concepts of Kolmogorov’s theories and hope, thereby, to help d e h e  what the 
problems are. 

2. Is the 1941 theory inconsistent? 
Kolmogorov traces the origins of the 1962 theory to a remark by Landau 

(cf. Landau & Lifshitz 1959) which questioned the universality of C in (1.2). 
Landau’s point, in essence, is that C is not invariant to the composition of sub- 
ensembles because the left-hand side of (1.2) is an average while the right-hand 
side is the 8 power of an average. Since the magnitude of E(x, t ) ,  averaged over 
the spatial domain of a flow, depends on the macroscale L and the intensity of 
large-scale excitation, it follows that C cannot be universal if (1.2) is asserted 
for flows with arbitrary statistical distributions of large-scale parameters. This 
difficulty arises whether the averages are taken as spatial averages over a 
super-large flow containing different macroregimes, or as corresponding en- 
semble averages over realizations of a single macroregime. 

However, the sensitivity of (1.2) to macrostatistics is really not to the point. 
The 1941 theory is intended to describe a universal statistical state attained 
by small scales, and therefore it should be applied only to subregions of a flow 
sufficiently small compared with gross dimensions that cascading has been able 
to set up that state. Statistical ensembles appropriate to the 1941 Cheory should 
have such subregions as typical realizations, or should describe statistically 
homogeneous flows that already display the universal statisbical state in the 
macroscales. The real question to be answered is whether the putative universal 
state is self-consistent and is a consequence of the cascade process. 

Landau’s objection can also be raised for subregions of flow regions already 
small enough for the universal state to be established. The only way in which a 
universal value of C can survive is if the statistical fluctuations of E(x,t) are 
confined to dissipation-range scales. That is, if 

qx, t )  M 6 ,  (2.1) 

for scales 1 which are well within the inertial range. This does not imply that 
there are no substantial fluctuations in energy transfer on the scale 1. It is essential 
to make the logical distinction between energy transfer and energy dissipation, 
and we shall now digress to set up a formalism for doing this. 
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Consider flow in an infinite domain, or a cyclic box, and make the de- 
composition 

where un(x,t) is the total contribution from all wavenumbers in the band 
2n-1 < k/k, < 212, except that uO(x, t )  represents the band 0 < k/k, < 1. Here k, 
is any characteristic wavenumber of the macroscale motion. The total energy 
(divided by density) is 

and the total dissipation is 

( 2 . 4 )  

where En"(, t )  is given by (1.4), with un in place of u. The diagonal form of (2 .3 )  
and ( 2 . 4 )  makes it convenient to identify the un(x, t )  with the various scales of 
motion, rather than the velocity differences u(x + r, t )  - u(x, t )  usually used. 
The same kind of decomposition can be made for general (non-rectangular) 
boundary conditions by using an appropriate set of orthogonal eigenfunctions. 

The energy density associated with band n a t  a particular point x is not a 
well-defined concept, because there are cross-terms. Nevertheless, the global 
relations ( 2 . 3 )  and ( 2 . 4 )  make it illuminating to deal wi6h the proper-energy 
density 4 I un(x, t )  I and proper-dissipation rate F(x, t )  even though they do not 
sum locally to the actual energy density and dissipation rate. The equation of 
motion for u ~ ( x ,  t )  is 

(ap t -  Y V 2 )  q x ,  t )  = -P$(V) [u,(x, t )  aqx,  t)/ax,], (2.5) 

where Pa(V) is a band-limited solenoidal projection operator, defined in the 
Fourier representation by 

6. ki kJk2 (k in nth band), 
P$(k)  = { i j -  (k not in nth band). 

It follows that the rate of transfer of proper-energy density into all bands above 
n is 

while the mean rate of energy transfer from lower bands to all bands above n is 

r I 7 6 ( t )  = (Pyx, t ) ) .  (2.7) 

In a statistically steady state, conservation implies that rln(t)  = E ,  for n in 
the inertial range. But this does not mean that fin(x,t) = E"(x,t) in the statis- 
tically steady state. Both un(x, t )  and, consequently, fi7a(x, t )  exhibit fluctuations 
as a result of transient imbalances in the cascade and of spatial transport of 
energy within the bands. Now we must examine the consequences of the case 
in which the fluctuations in fin(x, t )  are on a larger spatial scale than those of 
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fin'(x,t), if n' 3 n, and, especially, are on a larger spatial scale than those of 
E(x,t). For this to be dynamically consistent, we must suppose that there is a 
strong mixing of energy in space, as well as the cascade in wavenumber. The 
characteristic time for spacewise diffusion of energy on the scale of band n must 
not be larger in order of magnitude than that for transfer of energy to higher 
bands. A further implication is that u ~ ( x ,  t )  and un'(x, t )  are statistically inde- 
pendent if n' 9 n. 

The equations of motion give some support, in a general way, to the possibility 
that there exists a spacewise diffusion mechanism adequate to validate the 1941 
theory. Let us tmncate (2.5) by retaining on the right-hand side only the con- 
tributions u,"(x,t) and u?(x,t) to the u fields. In  the absence of viscosity, the 
truncated system is conservative and satisfies Liouville's theorem (Lee 1952). 
Left to itself, this system plausibly should relax to an equilibrium distribution 
in which any initial strong intermittencies in un(x, t)  are relaxed and un(x, t )  is 
multivariate normal. It seems clear on dimensional grounds that the character- 
istic time for this relaxation is N (knvn)-l,  where kn and vn are the characteristic 
wavenumber and amplitude level for un(x, t ) .  This is also the magnitude of the 
time constant for yielding up of the energy in un(x, t )  to higher bands, according 
to the Kolmogorov cascade ideas for the full, non-truncated system.7 

Returning to the actual Navier-Stokes equation, we probably must concede 
that there exist spacewise diffusion effects of sufficient strength to make the 
1941 theory a prior; possible. Whether these effects, which constitute cross- 
linkings of spatially local cascade chains, actually do suppress the build-up of 
intermittency appealed to in the 1962 theory is another question. We have two 
reasons for feeling (but not proving !) that they do not, One is the results of the 
cascade models presented later in this paper, which exhibit a, build-up of inter- 
mittency with the number of cascade steps, despite a cross-linking mechanism. 
The other lies in some simple physics of the vortex-stretching process. 

In  closing this section, we want to make tihe point that El(x, t )  is not an inertial- 
range quantity when 2 is an inertial-range scale. Instead it is the integral of a 
dissipation-range quantity. The proper inertial-range quantity is the energy 
transfer rate, as given by fln(x, t )  or some similar construction. We have shown 
that the consistency of the 1941 theory requires that C(x,t) fluctuations be 
essentially confined to scales of order kzl. There would appear to be no logical 
basis, on the 1941 theory, for supposing that the low-k tail of the spectrum of 
E(x,  t )  obeys inertial-range scaling, which would imply that F, N s2Ic-l for 
inertial-range k.  On the contrary, if the spectrum has the form F, N e2(k/kd)"k-l 
for inertial-range k, we have no way, on the basis of simple qualitative considera- 
tions, of deciding what s should be. 

t It is of interest, at this point, that  we can exhibit explicitly a self-consistent dynamical 
system which embodies the local-in-wavenumber energy cascade invoked by the 1941 
theory and yields both the $-spectrum and an E(x, t )  which fluctuates only on dissipation- 
range scales. This is the direct-interaction approximation (realizable by a model construc- 
tion) for a modified Navier-Stokes equation in which the convection effects of given 
scales on much smaller scales are consistently removed (Kraichnan 1964). 
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3. Vortex stretching and intermittency 
The terms ‘scale of motion’ and ‘eddy of size I’ appear repeatedly in treat- 

ments of the inertial range. One gets an impression of little, randomly structured 
and distributed whirls in the fluid, with the cascade process consisting of the 
fission of the whirls into smaller ones, after the fashion of Richardson’s poem. 
This picture seems to be drastically in conflict with what can be inferred about 
the qualitative structure of high-Reynolds-number turbulence from laboratory 
visualization techniques and from plausible application of the Kelvin circulation 
theorem. 

Batchelor (1952) argued that a random flow should, on the average, separate 
irreversibly the vertices of an initially compact small volume moving with the 
fluid, Incompressibility then implies that the surfaces of the volume must be 
drawn towards each other, producing an extended thin structure out of the 
initially compact blob. An eventual ribbon-like structure seems most likely 
since it is improbable that the net stretching in any two directions should be 
nearly equal. Recently Cocke (1969) and Orszag (1970) have proved that a line 
element, or a surface element moving with an isotropically turbulent fluid is, 
in fact, drawn out on the average. 

The stretching mechanism has led a number of authors to conjecture that the 
small-scale structure should consist typically of extensive thin sheets and 
ribbons of vorticity, drawn out by the straining action of their own shear fields 
(e.g. Townsend 1951; Batchelor 1953; Kraichnan 1959; Corrsin 1962; Saffman 
1968; Tennekes 1968). In this picture, the randomness lies in the distribution of 
thickness and extension of the thin sheets and ribbons, and in the way they are 
folded and tangled through the fluid. A typical small-scale structure is thought 
to be small in one or two dimensions only, not in the third. 

It is difficult to test the picture above by laboratory measurements. However, 
Kuo & Corrsin (1972) have recently tried, and they do infer, from two-point 
hot-wire measurements, that the intermittent small-scale structures observed 
at  high Reynolds numbers are typically ribbons or tubes of activity, rather than 
compact blobs. An elementary supporting visualization consists of stirring ink 
into a vessel of water. Of course the resulting sheets and ribbons of ink are not 
vorticity, but observation of this phenomenon makes similar behaviour for the 
vorticity plausible. 

Now consider a specific initial-value problem. Let the initial flow of very high 
Reynolds number consist of a random array of ring vortices, all with the same 
ring diameter, tube cross-section and vortex strength. The rings may or may 
nob be linked, but they do not intersect. Assume that viscous diffusion is negligible 
until the rings are stretched to very much smaller cross-sections than they have 
initially. On the basis of the preceding discussion, we expect that the collective 
shear field will typically stretch the rings into long, tangled, but still non- 
intersecting ribbons. Since the vorticity does not diffuse, the volume of fluid 
containing vorticity stays the same during the stretching, and in this sense there 
is no increase in intermittency. However, Kelvin’s circulation theorem implies 
that the Ootal vortex strength per unit length of ribbon stays constant during 
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the stretching, so that the local vorticity amplitude in the ribbon is inversely 
proportional to the local ribbon cross-section. Since the stretching is stochastic, 
an initial &function distribution of vorticity amplitude in the rings develops a 
statistical spread. If there is effective statistical independence of successive 
stretchings, then each stretched ribbon element of given vorticity amplibude 
develops a further statistical spread. The result is that the vorticity-amplitude 
distribution displays ever-increasing intermittency in space, until the ribbons 
are stretched to a thinness such that viscosity can no longer be neglected. 

The simplest mathematical model of the increase of intermitbency of vorticity 
amplitude during the assumed random stretching is that of Saffman (1970). 
He assumes that 

where w is the vorticity in a fluid element and b(t)  is the effective stretching. This 
awlat = q t )  w ,  (3.1) 

gives 

so that w ( t )  becomes asymptotically log-normal for t long compared with charac- 
teristic correlation times of b(s). We shall see in the next section that the asymp- 
totic distribution need not be, and probably is not, actually log-normal. However, 
it seems inevitable that the vortex-stretching picture does lead t o  some kind of 
increasingly intermittent vorticity distribution. To avoid this conclusion, one 
must appeal to some kind of negative correlation between the degree of past 
stretching and probability of future stretching; that is, a tendency towards 
alignment of strongly stretched ribbons in the ambient shear in such a way that 
future stretching is minimized. This cannot be ruled out a priori, since vorticity 
and shearing are functionally related, but it seems an awkward assumption. 

The vortex-stretching picture, with its implied increase of intermittency 
during cascade, seems quite foreign to the 1941 theory. The spacewise mixing 
within given scale sizes, which we found essential to that theory, would be 
associated, in the vortex-stretching picture, with the spatial convection and 
bending, or bellying, of the ribbons. It would then be a concomitant rather 
than a competitor of the intermittency-increasing stretching. In  the preceding 
section we invoked a tendency towards absolute statistical equilibrium within 
the bands u”(x,t) as giving possible support to the 1941 theory. The vortex- 
stretching picture suggests that energy and vorticity are squeezed into higher 
bands, at  each cascade step, before this tendency can be effective. 

The vortex-stretching picture gives general qualitative support to the 1962 
Kolmogorov theory, provided that the stretching is associated with successive 
instabilities of the vortex sheets, corresponding to the random cascade steps of 
that theory. Several authors, however, have questioned the whole concept of a 
hierarchy of random cascade steps. Corrsin (1962) and Saffman (1968, 1970) 
propose models in which the small-scale structure consists of shear layers whose 
thickness is the Kolmogorov dissipation scale, but which are coherent over 
much larger distances: the macroscale in Corrsin’s case and the Taylor micro- 
scale in Saffman’s. Measured on inertial-range scales, these structures are 
effectively shear discontinuities, the low wavenumber tail of whose spectral de- 
composition represents the inertial-range spectrum. Chorin (1970, unpublished 
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manuscript) proposes a variant in which the inertial range is the spectral tail of 
concentrated line vortices. 

A surface shear discontinuity gives a low-k tail of the form E(k)  cc 1%-2, while 
a line vortex has a tail like E(k) cc ko. Thus, in order to get something close to 
E(k) cc k-9, in accord with experiment, a cusp-like velocity distribution would 
be needed a t  the discontinuity in the case of surface discontinuities, while an 
extended vorticity distribution, away from the centre-line, would be needed in 
the case of line vortices. 

A generaIly unappreciated point is that the inertial-range energy cascade is 
local in wavenumber, even when the inertial-range spectrum is the spectral tail 
of coherent discontinuous structures, like those suggested by Corrsin, Saffman 
and Tennekes. We shall illustrate this with Burgers' equation. Here it is known 
that a freely decaying, infinite-Reynolds-number flow with cyclic boundary 
conditions degenerates into a velocity distribution consisting of a single decaying 
sawtooth shock wave in each cyclic cell, yielding an energy spectrum E(k)  cc k-2. 
Let the cyclic cell size equal 2, with the sloping sawtooth edge centred on x = 0 
in the primary cell. The velocity field in this cell is then 

u(x,t) = % / @ - t o )  (1.1 < I), 

where to is a virtual time origin. The Fourier decomposition 
m 

u ( ~ , t )  = 2 u,(t)exp(inm) 
n=--00 

then gives 

while the transform of the inviscid Burgers equation is 
u,(t) = 0 (n even), u,(t) = i[nn(t - to)]-l (n  odd), (3.3) 

m 

du,ldt = -&in u,-,u,. 
m=-m 

(3.4) 

The point now is that the contributions to the right-hand side of (3.4) are 
local in n space, dominated by In-ml N In1 and Iml N In/. It is easily verified 
that (for n odd) the total contribution to (3.4) from all Iml < m, < 1.1 is 

1 m1 
- in (n2--m2)-I. 

For m, 4 n, this sum is N im,/n and is in phase with u,, representing an energy 
input to u, which vanishes for m,/n -+ 0. Similarly, the contribution from all 

1 "  Iml 3 m, > [nl is 
- in C (n2--m2)-l, 
71 nz=rn, 

which is out of phase with un, representing an energy drain to higher wave- 
numbers. Again, this contribution is local in the sense that it vanishes for 
n/ml+ 0. The principle which this example illustrates is that localness of energy 
transfer in Fourier space depends on the exponent of the spectrum power law, 
and not on coherence properties. 

At present there is not enough solid knowledge about t,he Navier-Stokes 
equation to say with assurance that Kolmogorov's idea of multiple random 
cascade steps is qualitatively correct. We feel, however, that the models of 

m=l  
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Corrsin, Tennekes and Saffman are unlikely candidates, for two reasons. The 
first is the difficulty of producing an inertial-range spectrum close to experiments, 
which fit well the -+-law. There seem to be two ways of escaping the k2 law 
associated with an extensive coherent shear-discontinuity surface. Either one 
appeals to some cusp-like behaviour at  the discontinuity, for which no physical 
basis has been offered, or else one supposes that the surface of discontinuity is 
crinkled on inertial-range scales, so as to give destructive interference a t  low 
wavenumbers. The second possibility would appear to give a model which 
differs little from Kolmogorov’s, for one must have some mechanism to make 
the crinkling. Our second source of discontent is more basic, but also more 
vague. It seems simply implausible that, at  very high Reynolds numbers, the 
shear layers should shrink down to a dissipation-scale thickness as a result of 
only one or two instability breakdowns. What is there that could lock out myriad 
instabilities of many kinds in the high-Reynolds-number fluid ? The situation 
with Burgers’ equation is quite different; there are no instabilities of the freely 
decaying velocity field. 

Even if the underlying idea of a multistage breakdown is correct, Kolmogorov’s 
first and third hypotheses of 1962 do not necessarily follow. In  the next section, 
we shall discuss the third hypothesis, which is the easier to take up first because 
it is so specific. 

4. Log-normality and alternatives 
It is not clear whether Kolmogorov (1962) meant the log-normal law 60 be 

literally true, or simply representative of distributions in which intermittency 
increased systematically with decreasing scale size. The companion paper of 
Oboukhov (1962) suggests 6he latter view. Whatever the original intention, log- 
normality has been taken very literally by experimenters seeking to interpret 
their data. 

We shall now present Cwo reasons why it is doubtful that the small scales 
exhibit asymptotic distributions that are really log-normal. The first has to do 
with the nonlinearity of the dynamical processes; the second is connected with 
tihe fact that the sum of independent log-normal variables is not log-normal. 
We shall point out also that, even if the asymptotic distributions were log- 
normal, moment ratios in the non-asymptotic region (which is the region 
experiments are limited to) could differ drastically from log-normal values. 

Equation (3.1) typifies dynamical equations which lead asymptotically to 
log-normality. It is linear, the coefficient process b( t )  is independent of o(t), 
and it involves a single dependent variable. The precise conditions on b(t)  which 
make 

J tb ( s )  0 as 

asymptotically normal are discussed by Lumley (1972) and Rosenblatt (1972). 
Clearly, if b(t)  happens to be normal, then w ( t )  is log-normal for all t ,  if w ( 0 )  is 
statistically sharp. Note that the composition law for normal variables implies 
that the product of two log-normal variables is log-normal. 
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An example of a flow problem which leads unambiguously to (3.1) and log- 
normal statistics is the elongation of infinitesimal line elements that move with 
an incompressible fluid describing random, statistically homogeneous and iso- 
tropic motion (Cocke 1969;  Orszag 1970). The rate of elongation of any given 
line element of length w( t )  clearly is proportional to w( t ) ,  yielding (3.1), with 
statistics for b( t )  which are a functional of the flow statistics. Now, let the fluid 
start from rest at  t = 0, describe a statistically homogeneous and isotropic 
motion and come to rest a t  t = t,. Then let it describe a similar but statistically 
independent motion for t ,  < t < t,, and so forth, where the t ,  are any set of 
roughly equally spaced times. 

The statistical isotropy, homogeneity and independence conditions assure 
that b( t )  for t > t ,  is statistically independent of w( t ) ,  and b( t )  for t < t,, there 
being no possible correlation due to orientation of the line element. That is, the 
statistics of future elongation depend solely on the scalar length w( t )  ab each 
time t,. It then follows from the central limit theorem that 

J t b ( s )  0 ds 

is asymptotically normal as t -+ 00. Cocke (1969) shows that the mean logarithmic 
elongations ( Jtr+'b(s) ds)  

are positive.? 
Now consider (3.1) again as a model for vorticity increase due to stretching 

of vortex lines in the shear field. The shear and vorticity fields are intimately 
related, so that it is no longer really plausible to take b( t )  as statistically inde- 
pendent of w( t )  in (3.1). A more plausible model would be 

(4-1) dwldt = a ( t )  w2 - 7w3, 

where w > 0, 7 > 0 and a ( t )  is a random process. This equation may be con- 
sidered a crude simulation of the increase of vorticity by a cascade process like 
that called for by the 1962 Kolmogorov theory. The local vorticity level w 
increases stochastically, but at  a rate which, on the average, is proportional to 
w itself. The 7w3 term is an extremely crude model of the viscous damping: the 
damping factor qw2 would be proportional to vk2 if, as is qualitatively plausible 
from a picture of vorticity increase by stretching, the characteristic wavenumbers 
for the vorticity field rise as w does. We take a ( t )  as a stationary process, although 
it would be more realistic to let the characteristic frequency of a ( t )  increase 
with w. 

Now suppose that w ( 0 )  < 1 , ~  < 1 and ( [a ( t ) I2 )  N I. The damping term can be 
neglected in any realization until w ( t )  $ 1 occurs in that realization. Prior to 
that time, (4.1) has the approximate solution 

[w(t)]-1- [w(O)]-l = - a(s)  as. (4.2) 1: 
t In  a later paper, Cocke (1971) finds that the mean logarithmic rate of elongation tends 

to zero as t -+ co. Our construction here of a flow which is statistically independent in 
successive finite time intervals is a counter example, suggesting that this finding rests on 
an improper application of a central limit theorem for dependent variables. 
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Normality of the right-hand side, by virtue of the central limit theorem, as 
t -+ co now implies that l/o(t), rather than In [ ~ ( t ) ] ,  has an asymptotically normal 
distribution, if w ( 0 )  is statistically sharp. If the damping correction is taken into 
account, the distribution departs from (I/@)-normality at  large enough w 
values. 

The importaizce of this example lies not in the specific model, which we do 
not propose seriously, but in the demonstration that nonlinearity can invalidate 
simple arguments for log-normality. Great caution is required in making central 
limit arguments. Thus (4.2) can be rewritten as 

In [w(t)/w(O)] = a(s) w(s)  ds. so' (4.3) 

But now the central limit theorem cannot be legitimately appliedito the right- 
hand side because w(s)  never becomes independent of early values. A further 
example in which nonlinearity is associated with departure from log-normality 
is provided by the model of inertial-range cascade presented in 9 5, to follow. 

Yaglom (1966), Gurvich & Yaglom (1967), Novikov (1971) and others have 
considered models of the inertial-range cascade in which quantities associated 
with successive stages of the scale hierarchy are related according to 

$,+I= an+l$n, (4.4) 

where the a, are independent positive random variables. One choice for 4, 
could be the absolute value of un(x, 2)  at a given point. If $,, = 1, it follows from 
the central limit theorem that gn has an asymptotically log-normal distribution 
as n+m. 

However, it is physically as reasonable to replace (4.4) with 

(4-5) 
R 

3 = 1  
$n+l,i = s a a , + l , i j $ n , j  (i = 1 , 2 , - - . > R ) ,  

where the a,,ij are random matrices, independent for different n. This would 
mean that the cascade step at each point would depend on the interrelation of 
several parameters, the R quantities $,,$, instead of just one parameter. Perhaps 
the $n,i could be the shear a t  several nearby points, enough points to determine 
how stable or unstable the local velocity field is. But now, it no longer is true in 
general that $n,g has an asymptotically log-normal distribution, the reason 
being that addition of log-normal variables does not usually yield a log-normal 
sum. 

If R is a small integer, it is to be expected that the departure of the asymptotic 
distribution from log-normality is weak, in the sense that the growth of high- 
order moments with n should not differ much from the way they would grow 
under (4.4). This is supported by the observation that adding together R statis- 
tically similar and independent variables reduces the normalized cumulant of 
order s by a factor R*(z-S) ,  while multiplication by an independent factor a 
increases the normalized moment of order s by the factor (as)>l(az)*s. If, say, a is 
exponentially distributed, or has any distribution with an exponential or 
Gaussian tail, then this second factor overwhelms the Ri(z-s) facbor at large s. 
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We wish also to call attention to a special situation which leads to exact log- 
normality. Consider 

Y n + 1 =  An+IYn (Yo = 1). (4.6) 

Here the A, and Y, are square matrices and I is the unit matrix. If the A, are 
statistically independent matrices, the elements of Y, are in general not asymp- 
totically log-normal. However, 

det (Y,) = det (A,) det (A,-,) . . . det (A,) 

is asymptotically log-normal, and is log-normal for finite n if the det (A,) are 
all log-normal. Note that (4.6) is more restrictive than (4.5). In the latter, there 
are R dependent variables and R2 coefficients, while in (4.6) the number of 
components of A,+1 equals the number of components of Y ,. 

It is clear from the preceding discussion that, in the absence of any present 
basis for discounting effects of nonlinearity and linear composition in the 
inertial-range cascade process, the hypothesis that E(x, t) and El(x, t )  are asymp- 
totically log-normal must be considered arbitrary. Moreover, there is no reason 
to suppose, except as an approximation, that these quantities should be log- 
normal a t  the finite R.eynolds num.bers apd values of L/1 which are observable. 

However, it  should be pointed out that the general non-survival of log- 
normality under addition does not mean that simultaneous log-normality of 
E(x, t )  and its space integral 4(x, t )  is mathematically inconsistent, a question 
which has been raised by Mandelbrot (1972). It remains possible that the sum of 
suitably correlated log-normal variables is log-normal even though this is not 
true in general. Consider the system 

$0 = 1, h , i  = ai4w h , i j  = aijA,{ ,  A , i j m  = aijrnA,{j, (4.7) 

where all indices (i,j, . . .) run from 1 to R and the positive coefficients ai, aij, c+,, 
etc. are completely statistically independent except for the constraints 

Each variable q5n,ij,.. is a product of n statistically independent a-factors and 
therefore is log-normal as n -+ co, while (4.8) implies that 

2 #rn,ij ... = $n,<j ... (m > n), (4.9) 

where the summation on the left is over all indices (after the comma) that do 
not appear on the right. The construction does not yield which are log- 
normal for finite n because (4.7) does not permit log-normal univariate distri- 
butions for bhe positive variables a. 

For comparison with experimentis, the precise analytical form of the distri- 
bution is unimportant, both because asymptotic conditions cannot be expected 
in the relatively few cascade steps attainable at  even the largest known Reynolds 
numbers and because there are severe experimental difficulties in measuring 
highly intermittent distributions (Tennekes 85 Wyngaard 1972). We wish, 
however, to stress a point previously made by Novikov (1971). Consider again 
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the original simple scalar process (4.4), which leads asymptotically to log- 
normal q5n. The normalized moments of q5n are 

These ratios depend on the specific statistics of the a,, no matter how large n is. 
Unless the am happen themselves to be log-normal, the moment ratios for large 
n cannot be approximated, in general, by the ratios for a log-normal q5n 
distribution. 

A final point which perhaps needs recalling is that arguments for log-normality 
are completely inapplicable to  individual wave-vector components of the 
velocity field of homogeneous turbulence in an infinite cyclic box. If statistical 
correlations are confined to finite distances, then the univariate distribution of 
every individual Fourier component is accurately normal, whatever the degree 
of intermittency of the x-space velocity field (Kraichnan 1959; Lumley 1972). 
The band-limited fields u ~ ( x ,  t ) ,  on the other hand, involve many Fourier com- 
ponents which are weakly statistically dependent (Kraichnan 1959), and they 
do express spatial intermittency. 

5. A cascade model 
We wish now to introduce a model of the inertial-range cascade which serves 

the dual purpose of illustrating that nonlinearity can effect departure from 
asymptotic log-normality and of providing a vehicle for exploring the impact, 
on intermittency growth, of the kind of spatial diffusion (cross-linking of cascade 
chains) appealed to in $ 2 .  The model posits an equation for the rate of change 
of the probability distribution of the lun(x,t)l due to supposed sudden dis- 
integrations of structures of one scale into ones of smaller scale. In  its use of a 
rate equation, the model differs from those of Yaglom (1966), Gurvich & Yaglom 
(1967), Novikov & Stewart (1964) and Novikov (1971), which postulate relations 
of the general sort (4.4) between quantities describing an instantaneous statis- 
tically steady state. Our model is no less arbitrary than those cited. 

The un(x, t )  were defined in 3 2 as octave band-limited fields. We wish now to 
generalize to bands of any constant; logaritihmic width kn/kn-l = a, where k, is 
the geometric-mean wavenumber of band n. Por example, a could be 10. Suppose 
that the spatial distribution of u,(x, t )  = Jun(x, t)l in an inertial-range band is 
strongly intermittient, so that for most x a good approximation is u,(x, t )  = 0. 
(In this section subscripts denote bands and are not tensor indices.) Let P,(u, t )  du 
be the fraction of the total volume in which, on the average, u, has a (non- 
negligible) value between u and u -t du. The total probability distribution of u, 
is then approximated by 

Pn(u, t )  + [l -J-omPn(uf, t )  du’ 6(u). I 
Now let the structure in band n - 1 disintegrate into n-band structures, with 

a disintegration rate-constanti ,8k,--1u,-1, where p is a numerical coefficient and 
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kn-lun-l is the local eddy-circulation frequency for band n - 1. Let each break- 
down yield N, successive non-overlapping daughter structures, each with the 
same volume as the mother and with amplitudes satisfying the energy-conserva- 
tion relation N,u: = u;-~ locally. Thus the disintegration of (n- i)-band struc- 
tures with total probability measure P,-l(u, t )  du in the interval 

u < un-l < u -k du 

gives rise to daughters with total measure N, Pn-,(u, t )  d u  in the interval 

N ~ U ,  < u+au. 

If this process goes on simultaneously in all inertial-range bands, it is described 
by the rate equation 

dP,(u)/at = - ~ ~ , U P , ( U )  + p ~ , k , _ , ( u ~ i )  P,-,(t&) ~ t .  (5.1) 

Here u is now the daughter amplitude, pknu the daughter disintegration rate, 
u N i  and pl%,-, u N i  are, respectively, the mother amplitude and disintegration 
rate, while P,-,(uNi) N$ du is the probability measure of mothers that yield 
daughters with u < u, < u + du.  Integration of (5.i) ,  multiplied by u2, gives the 
energy balance equation 

( 5 . 2 )  

The energy input term for band n is the energy loss term for band n - 1, which 
exhibits the conservation built into the model. Here 

d(ui)/dt = -pkn(U;) 4- pk,-,(u:J 

(urn) = P,(u) Urdu. Som 
The statistically steady state is found by setting dP,(u)/dt = 0 in (5.1). Inte- 

gration of the resulting equation, after multiplication by ur-l, yields 

k,(u&) = kn-l{~k-l) Ni@-'). (5.3) 

The requirement that (5.3) give a similariky solution, in which the ratios 

(GJl (u: )7ls 

( ~ ~ ) / ( u L J  = (kn/kn-I)+, 

are independent of n, now implies that N, = (k,Jk,-J*. With this choice, (5.3) 
yields 

in agreement with the 1941 Kolmogorov theory. 
Now let a stochastic element be introduced into the disintegration process by 

again assuming thab each (n- i)-band structure gives N, = (kn/kn-,)# n-band 
daughters but with the amplitudes of mother and daughter related by 

unV1 = u,Ni/x, 

(5.4) 

where x is a positive random variable with probability distribution 

4?(4 [ jornQ(.)dX = 1 I . 
Then (5.1) is replaced by 

dP,(u)/at = -~~,uP,(u)  +pk,-,N;u Q ( ~ )  X-2dX. (5.5) 
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Here pk,-,uN$/x is the mother disintegration rate and P,-,(uN$/x) N,x-ldu is 
the conditional probability measure of mothers that yield daughters with 

u < u, < u+du. 

Multiplication of (5 .5 )  by u2, followed by integration f i s t  over u and then 
over x ,  gives ljhe energy balance equation 

d(ui)/dt = - @hn(ui) + /3kn-1(4-1) (x'), (5.6) 

where (XI> = /om&(x) z d x .  

In order that there be energy conservation in the mean, &(x) must therefore be 
constrained by (x2)  = 1. We interpret the non-conservation in individual dis- 
integrations ( x  9 1 )  as reflecting the fluctuations associated wibh energy trans- 
port from point to  point in physical space. The original model is recovered by 
t,aking &(x) = 6(x - 1).  

The moment relations in the statistically steady state are obtained from (5 .5)  
by setting dF,(u)/dt = 0: multiplying by ur-l and integrating over u first and 
then x. This gives 

which may be rewritten as 

(uk>/(uL1> = (kn/kn-J+(xr-')> (5.7) 

Since &(x) is a probability distribution, the x moments satisfy realizability 

(x)2 < (x2), (X2T) >, (x2>r, (x') > ( X S ) T ' S  ( r  > s > 1) .  (5.10) 

The equality signs hold only for the degenerate case of &function &. Since 
(x2) = 1, it  follows that 

inequalities, of which examples are 

p(2) < 0, p(3) = 0, p(r) > 0 (r > 3). (5.11) 

A consistency requirement is 

/omPn(u)du < 1. 

This can hold as n-+m only if p(0) < 0, or r1 < 1. Any &(x) of the form 

&(x) = f ( x ,  x-l) x-l, f ( X ,  Y) = f ( Y ,  4, (5.12) 

gives (x-I) = (x), and so automatically satisfies this requirement. 
The power-law behaviour defined by (5.8) and (5.11) is qualitatively in agree- 

ment with the 1962 Kolmogorov theory. The band energy (uz) falls off more 
rapidly than k;g, while normalized high-order moments grow with order and 
with n, indicating increasing intermittency as n increases. The flexibility to fit 
a wide range of experimental data is provided by the freedom of choice of &(x) 
and a in the model. The physics of the model is more plausible if &(x) falls to 

21 F L M  62 
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zero for x greaber than some cut-off (say x = 2) than if &(x) extends to infinite x. 
Cuti-off forms of &(x) also turn out to be good choices for matching the experi- 
mental values ,142) N -0.05, with a in the range 2-4, although it is not our 
purpose here to make detailed matches with experiment. 

The agreement with the 1962 theory does not extend to log-normality. First 
of all, the moment ratios (5.8) depend on the precise statistics of x, even as 
n+co (again cf. Novikov 1971). Second, the asymptotic distribution to which 
P,(u) tends as n-tco is not log-normal; this is because (xr-I) rather than (xr) 
appears in (5.7). If the exponent were r ,  equation (5.7) could be realized by 
random variables obeying 

un = ( f i n / k n - l ) - + x ~ ~ ~ - l ,  (5.13) 

where the x, are statistically independent variables with probability distribu- 
tion &(x). Then it would follow that u, is asymptotically log-normal. 

The failure of asymptotic log-normality in the present model is associated 
with nonlinearity in the disintegration process: the rate @,u, is not a constant 
but instead depends on u,. Consider what happens if pk,un is replaced by the 
typical eddy frequency (€A$)*, which is suggested by the 1941 Kolmogorov 
theory. The corresponding changes in (5.5) are that /3k,u in the first term on 
the right-hand side is replaced by (ek i )% while a factor pknn-luN$/x extracted 
from the second term is replaced by (eki-,)*. The easily verified result is that 

<UL>/(uL-J = (kn/kn-l)+(xr). (5.14) (5 .7)  is changed to 

The qualitative behaviour of the model is essentially unchanged, with regard to 
power laws, but now the u, distribution is asymptotically log-normal as n --f co. 
It seems more natural, within the general context of the model, to use the local 
eddy frequency k,u, rather than a frequency determined by the mean dissi- 
pation e. 

The nonlinearity reflected in (5 .7 )  is associated with a disintegration rate 
proportional to amplitude, which tends to depress the relative probability of 
occurrence of large amplitudes. Thus, for given &(x), equation (5.7) gives a less 
rapid rise of, for example, kurtosis with n than does (5.14). It is interesting that 
the effect of nonlinearity in the present conservative steady-state model is 
opposite in sense to that noted previously for the non-conservative transient 
problem posed by (4.  I) .  

In  $2, we invoked spatial diffusion within the band-limited fields as a mech- 
anism of cross-linking cascade chains and thereby possibly validating the 1941 
theory. The diffusion process, like the band-to band cascade, presumably should 
have a characteristic rate of order k,u,. The simplest way to represent such a 
process in the present model would appear to be the inclusion of an additional 
disintegration term of the form -p'k,P,(u) in (5 .5 ) ,  plus a creation term des- 
cribing the reappearance of the excitation in the same band n, but with a 
different amplitude distribution. The diffusion must be conservative, which 
means that the contributions of the additional destruction and creation terms 
to the energy balance equation must cancel. In  turn, this implies that the right- 
hand side of (5.6) must still vanish in the statistically steady state; in other 
words, (5.7) is unaltered for r = 3. An important conclusion can now be drawn 
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without specifying the precise form of the creation term except to note that it must 
provide a positive contribution to each steady-state moment equation formed 
from (5 .5) .  Noting this, and taking account of the extra destruction term, one 

(uL>l(uLl> 2 [P/(P + P')I (knIkn-l)-'r{xr-l) (6.15) 
now finds 

instead of (5.7). This equation, bogether with the unaltered equation (5.7) for 
r = 3, implies that 

<uTn>l(u:>* 2 (um-l>I(~L>'' " ( P  + P')1 (Xr - l>>  (5.16) 

where we have used (x2) = 1. 
If &(x) satisfies (x2) = 1, and has support away from x = 1, then (x') must 

grow at least exponentially with r ,  for large r.  Therefore (5.16) shows that 
normalized moments at  large enough r must grow with n, no matter how large 
the diffusion parameter P' may be. The conclusion is that, in the present model at  
least, the cross-linking of cascade chains by intra-band mixing cannot be powerful 
enough to suppress the building up of intermittency along the cascade chains. The 
fact that intense eddies break up faster does not suffice to  limit intermittency. 

6. Kolmogorov's first hypothesis 
We wish now to discuss possible alternatives to Kolmogorov's first hypothesis 

of 1962. In  order to bring out the non-uniqueness of this hypothesis, it will be 
sufficient, and clarifying, to restrict attention to statistically stationary and 
homogeneous turbulence, maintained in an infinite cyclic box by stationary 
homogeneous stirring forces that are confined to low wavenumbers. We shall 
suppose, specifically, that a random force f?(x,t) is added to the right-hand 
side of (2 .5 )  and that it vanishes except for n = 0. We shall use the band-limited 
fields u ~ ( x ,  t )  as %L framework, rabher than the velocity differences 

u(x + r, t )  - u(x, t ) ,  
because the former fit more naturally into discussions of energy transfer. The 
field u ~ ( x ,  t )  may be taken in the generalized form used in $ 5 .  That is, uo(x, t )  
comprises all wavenumbers less than k, and u"(x,t) for n > 0 comprises all 
wavenumbers satisfying an-l < k/k, < an, while the characteristic wave- 
numbers kn (n > 0) are defined by kn = an-*k,. Then k, is the macroscale wave- 
number and a may be 2, or 10, or any bandwidth which seems appropriate. 

We shall restrict fo(x,t) so as to exclude intense spatial or temporal inter- 
mittencyv in the forcing which, following the discussion of $ 2 ,  could make the 
1941 theory a priori inapplicable. This can be accomplished, for example, by 
requiring that all but the first few terms of an expansion of fo(x, t )  in Wiener- 
Hermite functionals of a space-time white-noise process vanish. Here we appeal 
to the four-dimensional generalization of the Wiener-Hermite expansion dis- 
cussed by Imamura, Meecham & Siege1 (1985) and others. 

The two hypotheses of the 1941 theory may now be formulated as follows. 
First hypothesis. At very high Reynolds numbers, the multivariate distribu- 

bions of any set of the un(x, t )  (n >> 1 )  at a given instant are universal functions 
solely of the k, in the set and of e and v. 

21-2 
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Second hypothesis. As the Reynolds number becomes infinite, these distribu- 
tions become independent of v, for fixed 12 values 9 I. 

The question now is what modifications of the first hypothesis are plausible, 
and consistent with the concept of a multistage cascade proceeding in constant 
logarithmic steps of wavenumber, and with intermittency increasing in some 
systematic and self-similar fashion at each step. Clearly the asymptotic distri- 
butions must now depend on the number of cascade steps, which is 

N In (k,/k,) N n. 

Therefore the minimum modification of the first hypothesis that embodies the 
qualitative ideas underlying the 1962 theory would appear to be the following: 
at, very high Reynolds numbers the multivariate distributions of any set of the 
un(x, t )  (n % 1) at a given instant are universal functions solely of the k ,  in the 
set, of k, and of 8 and v. No modification of the second hypothesis seems to be 
required. In order to take account of possible persistence of intermittency intro- 
duced through the fo distribution, the first hypothesis could be weakened by 
giving to the word universal the special meaning that logarithms of probability 
densities or moments become universal functions, thereby ignoring factors of 
order one. 

Even without this weakening qualification, the modified hypothesis we have 
stated does not permit specific conclusions about functional dependence in the 
inertial range, analogous to those of the 1941 theory. For example, it implies 
for E ( k )  only that 

where g is some unknown universal function. There is no basis, in the hypothesis 
itself, for concluding that g(k/k,)  must be a power rather than, say, a power 
multiplied by some logarithmic function of klk,. The latter conceivably could 
arise from some subtle phenomenon of alignment of vortex lines in the straining 
field as the cascade proceeds. 

In  his 1962 paper, Kolmogorov makes a stronger first hypothesis than we do 
above, by making detailed assumptions about conditional probabilities. In fact, 
the paper contains two, inequivalent, versions of the first hypothesis. They go 
as follows for the v-independent inertial range. The first version states that, if 
x' is in the neighbourhood of x, then the probability distribution of 

E ( k )  = €+k-*g(k/k,), (6.1) 

u(x', t )  - u(x, t )  

conditional upon a sharp value of E r ( x ,  t)  is universal, provided that Ix'-xl and 
r are both in the inertial range and that lengths and velocities are non- 
dimensionalized with r and CJx, t ) .  The second version states that the probability 
distribution of the ratio 

[Ui(X'"', t )  - U i ( X ,  t )] /[Ui(X(0' ,  t )  - U i ( X ,  t ) ]  

x(n)--x (n = 0 , 1 , 2  ...) 

is a universal function of the arguments (x(,)-- X ) / / X ( ~ ) -  X I ,  where the 

are any set of vectors which all lie in the inertial range. 
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The two versions are inequivalent because, taking x(0) = x + r, a sharp value 
of Er(x, t) corresponds, in general, to a statistical spread of values of 

Ui(X(0), t )  - Ui(X, t) ,  

and vice versa. Predictions for the probability distribution of u(x’, t )  - u(x, t)  in 
the two versions could be equivalent, therefore, only if the normalized joint 
distribution of $(x, t )  and ui(x +r, t)  - ui(x, t)  were universal. But the latter 
situation would be inconsistent with the build-up of intermittency and change 
of statistics in general during the cascade; it would make sense only in the 
degenerate case of the 1941 theory. 

A further difference in the two versions is that u(x(O), t)  - U(X, t )  is an inertial- 
range quantity while Er(x, t) is, instead, the integral of a dissipation-range 
quantity and cannot be directilly constructed as a function of inertial-range 
quantities. Consequently, the second version leads directly to the prediction of 
power-law dependence in the inertial range, while the first version does not, 
unless augmented with some additional assumption, like Kolmogorov’s third 
(log-normal) hypothesis. We shall demonstrate the power-law implication shortly. 
First we wish to expand on the lack of a direct connexion between 5(x, t )  and 
inertial-range quantities. The overall dissipation rate e must equal the rate of 
energy cascade through the inertial range, in the statistically steady state. 
However, conservation alone does not give any corresponding relation between 
Zr(x, t) and the local inertial-range cascade rate as measured, say, by IIn(x, t)  
defined in (2.6). A priori, Zr(x, t )  and 

rI?(x, t )  = 1 rIyx + y, t)  d3y 
lyI<r 

need not be similar even in their typical order of magnitude. For example, it 
could be that such a strong build-up of temporal intiermittency occurs in the 
inertia1 cascade that Gr(x, t)  is strongly intermittent in time and only its time 
integral over the eddy time (knun)-l is comparable in typical magnitude with 
II?(x, t ) ,  in the limit of very high Reynolds number. 

Thus, if a hypothesis is desired that asserts universal probabilities conditional 
on sharp values of a cascade parameter of local significance, something like 
rIn(x, t )  would seem an appropriate basis for constructing the parameter, rather 
than E(x, t ) .  However, there seems to be an infinite number of inequivalent 
candidates for conditional-probability hypotheses, and little way to choose 
among them without; knowing more than is known about the mechanics of 
the Navier-Stokes equation. For example, consider the hypothesis that the 
distribution of the band-limited fields is such that lun(x, t)(/Ium(x, t) l has a 
distribution which is a universal function of knlkm. This can be expressed in the 
conditional-probability form 

r 

P,(U) = J Pnm(U(U’) Pm(u’) du’, 

where Pnm(u/u’) has the form 
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and P,( Iun(x, t ) l )  is the probability distribution of Iun(x, 2) I. Manipulations like 
those of $ 5  then readily show that 

( ~ 3  = <uL)fXkn/km)) (6.4) 
where f r  is a universal function and, as in $5, u, = lun(x,t)l. Now, if (6.4) is 
applied between bands n and m, then between bands m and s, and finally be- 
tween bands n and s, the result is 

whence f r  is a power of its argument. A similar demonstration shows that Kol- 
mogorov's second version of the first hypothesis yields power laws, as stated 
above. 

Now, however, consider, instead of (6.2), the equally plausible hypothesis 

where P, is again the distribution of u,, Pk is the distribution of 

1 G1 x sum, t , / q  , 
if 

and P,,and P i m  are universal functions ofk,/km, u/v  and u/w. Such a conditional- 
probability hypothesis is a simple expression of an anticipation that the magni- 
tude of velocity derivatives as well as velocity amplitudes may be important in 
determining the instabilities that lead to breakdown. (It might be just as 
plausible to include second derivatives as well.) Because there are now the two 
arguments u/v  and u/w,  the demonstration of a power law for moments does not 
go through and the hypothesis does not lead to definite inertial-range predictions. 

All the hypotheses considered in this section so far are relations between 
probabilities all measured at  the same instant. This in itself seems an inappro- 
priate limitation, since the Navier-Stokes equation gives evolution in time, 
and the inertial range is a state of statistical non-equilibrium, in the fundamental 
sense. The model of $ 5 ,  which used a rate equation for partial distributions, 
represents a slight relaxation of this limitation. Already that relaxation was 
sufficient to give a non-log-normal asymptotic distribution, while the related 
instantaneous model, described by (6.2)-(G.4), is readily seen to give log-normal 
asymptotic statistics. A proper treatment of many-time distributions in the 
inertial range probably requires the introduction of some kind of Lagran,' o-ian or 
modified Lagrangian description (Kraichnan 1964). 

The principal pointi of this section, and $ 5 ,  is that the assumption that there 
exists a self-similar cascade mechanism, local in scale size, is not in itself sufficient 
to determine the inertial-range statistics, even to the extent of implying a power 
law for the energy spectrum. Although a wide variety of choices of mechanism 
involving conditional-probability assumptions for the cascade will lead to 
increases of intermittency with decreasing scale size, only some of these choices 
will lead to log-normal asymptotic statistics. 
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The situation with regard to dissipation-range statistics is even less well 
defined. We have pointed oub above that there is no very direct relation between 
inertial-range and dissipation-range statistics. Moreover, strong intermittency 
in the far-dissipation range, which means strong intermittency of high-order 
velocity derivatives, is to be expected at  all Reynolds numbers, high or low, 
independently of whether there is an inertial-range cascade (Kraichnan 1967). 
This is simply a consequence of the fact that when the spectrum falls off very 
rapidly with wavenumber, even slight fluctuations in spectrum parameters 
from region to region in the fluid produce enormous changes in these derivatives. 

As an example, suppose that the loca,l energy spectrum at high wavenumbers 
has the form 

where a(x) is a positive random variable that changes slowly with x. Then local 
averages of velocity derivatives have the form 

E(k,  x )  exp [ - ~/a(x)l/a(x), (6.7) 

( ( a ~ j a x ~ ) ~ } ,  cc [ ~ ( x ) ] ~ ~ .  (6.8) 

For large n, [a(x)Izn is a highly intermittent function of x even when a(x)  itself 
is only mildly intermittent. 

7. Statistical mechanics of the cascade 
The inertial-range cascade is an extremely interesting process from the view- 

point of fundamental statistical mechanics. Suppose that v = 0 and that the 
Navier-Stokes equation is truncated by removing all terms involving wave- 
numbers above some cut-off K.  This system obeys Liouville’s theorem, and 
there is an absolute equilibrium ensemble in which the Fourier components are 
statisbically independent, Gaussianly distributed and in equipartition (Lee 1952). 
Now suppose that an initial distribution is set up in which the energy is con- 
tained wholly in a band of wavenumbers k < k, < K and in which the excited 
wavenumbers have Gaussian amplitude distributions. Presumably the system 
will evolve eventually into the Gaussian equipartition solution, provided that 
the initial ensemble has zero mean momentum, angular momentum and helicity 
(Kraichnan 1973). However, if the general ideas of Kolmogorov’s (1962) theory 
are correct, the evolution from one Gaussian state to the other will involve a 
transient period in which the inertial-range cascade operates and the higher 
degrees of freedom have highly intermittent distributions in x space. The 
question arises: is such behaviour characteristic in general of the approach to 
equilibrium of nonlinear systems with many degrees of freedom? If so, are there 
any general statistical-mechanical principles which govern the non-Gaussian 
transient stage ? 

The behaviour described is, of course, only conjectural for the Navier-Stokes 
equation. However, it can be demonstrated for some model systems of the form 

d ~ n l d t  = Z a n r n ~ m  (anm = - a m n ) ,  (7.1) 
m 

where the anm are random coefficients, suitably chosen to give chain-type multi- 
furcating couplings. 
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If the Navier-Stokes equation is no6 truncated, and one takes the limit 
v -+ 0, then the 1962 theory implies that the dissipation takes place in an infini- 
tesimal fraction of the total fluid volume. Again this is conjectural for the 
Navier-Stokes equation, but it is demonstrable for Burgers’ equation, which 
has the same kind of nonlinearity and invariances and is known to lead to 
shock waves. Again, the question arises of how general and significant this 
behaviour may be. 

We wish to argue now that, even if the inertial-range cascade with increasing 
intermittency reflects some general statistical-mechanical principle, the precise 
forms of the inertial-range statistical functions and, in particular, the value of 
,u in the modified spectrum law (1.9) cannot follow from general considerations 
but depend instead on the detailed structure of the Navier-Stokes equation, 
A contrary view has been discussed by Nelkin (1973), who draws attention to a 
possible analogy between p and the universal exponents in critical-point phe- 
nomena. 

Our basic point is that the inertial-range cascade represents strong statistical 
disequilibrium. This carries two implications. First, that analogies with equili- 
brium and near-equilibrium phenomena are unjustified. Second, that the 
structure of the inertial range depends on the actual magnitude of the coefficients 
coupling the degrees of freedom and not just on their overall symmetry and 
invariance properties. This is because the cascade is a transport process and the 
coefficient magnitudes affect the rate of transport. 

We can support this point of view by considering the generalized Navier- 
Stokes equation 

(7.2) (a/at-vV2)Ui(X,t)  = - e j ( V )  [ v ( x , t ) .  VUi(X, t ) ] ,  

where P&.(V) is the solenoidal projection operator and v ( x , t )  is a solenoidal 
functional of u ( x ,  t)  that satisfies 

b ( x ,  t )  d3X = b ( X ’  t )  d3x. 

With these conditions, (7.2) gives conservation of ~ I u ( x ,  t ) I2d3x by the right- 
hand side, exhibits Galilean invariance (Kraichnan 1964) and has the same 
inviscid equilibrium equipartition distribution as the Navier-Stokes equation. 
The latter is recovered by putting V(X, t )  = U(X, t ) .  

The inertial-range cascade properties clearly depend on what V(X, t )  is. For 
example, consider 

(7.3) 

where h is an intrinsic length. This makes v ( x , t )  a non-local functional, but 
P&(V), which is in the original Navier-Stokes equation, is already more non- 
localizing. Suppose that a statistically steady state is maintained by driving 
the system at wavenumbers below A-l with a forcing term f i (x ,  t )  on the right- 
hand side. Equation (7.3) shows that the effective shear field acting on scales 
very much less than h is confined to the input wavenumbers. Consequently, 
although the energy cascade is still local in wavenumber, the entire basis of the 
- 9- or ( - Q - p)-type inertial range is gone. Instead, the arguments of Batchelor 

v ( x ,  t )  = exp [h2Vz] u ( x ,  t ) ,  
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(1959) apply, and one is led to infer that the inertial-range spectrum has the 
form 

where v,, is characteristic of the velocity in scales less than A. This complete 
difference in non-equilibrium behaviour arises despite the fact that the modified 
equation has the same essential invariances, symmetries, dimensionality and 
equilibrium statistical ensembles as the Navier-Stokes equation. 

With regard to the Navier-Stokes equation itself, the value of p in (1.9), if 
that equation is valid, depends basically on how fast intermittency rises along 
the cascade chain. This in turn depends on what the effective step size is in wave- 
number, and what; the effective statistical spread (analogous to the function fJ 
in the model of 5 5 )  is at  each step. Neither of these factors would appear to have 
any relation to basic invariances or symmetries; instead they would appear to 
be complicated functions of the particular mode-coupling coefficients that are 
present in the Navier-Stokes equation. 

E(k) N (s/v,) hk-I, (7.4) 
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